

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research

Konferenz Interessenverband Netzimpedanz – C. Klie – 15. Sep. 2022

SuSy: Sustainable DC Systems – Now and Then

USV

▼PV

HVAC

Kabinen

Küchen

DC BUS 2

[+ -

 FZ_x

FC

General SuSy goals

- Overall reduction of cabeling while maintaining secure operation
- Direct coupling of DC components to the grid

TUHH goals in SuSy

Investigation of equipment

compatibility

Investigation of control, stability,

reliability and security

ГИНН echnische Jniversität Hambura

SuSy: <u>Sustainable DC Systems – Now and Then</u>

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

Seite 2 Hamburg

Universität

Hardware-in-the-Loop – The why and how

Realtime simulation of hardware components

of

Real controller

Real hardware

Power Hardware-in-the-Loop – The next leap in HiL

e 4 **TUHH** Technische Universität Hamburg

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

PHiL Usecase: Impedance Replication of AIDAcosma

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

TUHH Technische Universität Hamburg

PHiL Usecase: Impedance Replication of AIDAcosma

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

TUHH Technische Universität Hamburg

PHiL Usecase: Impedance Replication of AIDAcosma

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

TUHH Technische Universität Hamburg

Importance of Impedance Measurement in the Future

Exemplaric impedance of DUT and ROS in PHiL

Visualization of unstable frequency regions of PHiL

PHiL gets unstable for $Z_{ROS}(f) > Z_{DUT}(f)$ due to delays (Nyquist) \rightarrow Interface Algorithm (IA) for compensation

Online impedance measurement of ROS and DUT with OP5707XG and Spitzenberger

✓ Current state: Online impedance measurement from 100 Hz – 30000 Hz in 0.3 s (realtime capable)

✓ Implementation of a custom interface algorithm which allows for full-bandwith PHiL simulation

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

TUHH Technische Universität Hambura

Thank you for participating!

Stability criterion for PHiL – Interface Algorithms (IA)

- Ideal Transformer Method (ITM)
 - Direct coupling of u from simulation to hardware
 - Direct coupling of i from hardware to simulation

- Advanced Ideal Transformer Method (AITM)
 - Direct coupling of u fom simulation to hardware
 - Direct coupling of i from hardware to simulation
 - Additional stabilization impedance

- Ideal Transformer Method (ITM) with Feedback Current Filter (FCF)
 - Direct coupling of u from simulation to hardware
 - Filtered signal i from hardware to simulation

Seite 11

ΊНΗ

Hambura

Stability criterion for PHiL – ITM theory

Open-loop is stable as $T_{LV}(s)$ is always stable Closed-loop stability:

$$\rightarrow G(s) = e^{-sT_G} \cdot T_{LV}(s) \cdot T_M(s) \cdot \frac{Z_{ROS}(s)}{Z_{DUT}(s)}$$

$$\rightarrow G(s) \approx \frac{Z_{ROS}(s)}{Z_{DUT}(s)} \stackrel{!}{\leq} 1$$

$$\rightarrow Z_{DUT}(s) \ge Z_{ROS}(s)$$

Stability criterion for PHiL – ITM theory

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

Universität Hamburg

Stabilitätskriterium für PHiL – ITM Stabilitätsbereich

Exemplarische frequenzabhängige Impedanzen bei PHiL

Stabilitätsbereiche für frequenzabhängige Impedanzen bei PHiL

- Berücksichtigung frequenzabhängiger Impedanzen
 {Z_{DUT}(f), Z_{ROS}(f)} : f = [0; 20] kHz
- Anregung von Frequenzen aufgrund der Vielzahl schaltender Elemente im Netz (VFD, DC/DC,...)

TUHH Technische Universität Hamburg

Stability criterion for PHiL - Examples

Simulated grid expansion with constant load and variable current source

- $Z_{sROS,Load} = Z_{sDUT,Load} = 31,36 Ω (marginally stable)$
- constantly increasing current I_{sDUT,Inverter} from battery inverter starting from t = t₁
- $Z_{sDUT} < Z_{sROS} @ t = t_1$

Stability criterion for PHiL - Examples

Simulated grid expansion with constant load and variable current source

- $Z_{sROS,Load} = Z_{sDUT,Load} = 31,36 \Omega$ (marginally stable)
- constantly increasing current I_{sDUT,Inverter} from battery inverter starting from t = t₁
- ◆ $Z_{sDUT} < Z_{sROS}$ @ t = t₁ → instability with ITM

Stability criterion for PHiL - Examples

Simulated grid expansion with constant load and variable current source

- $Z_{\text{sROS,Load}} = Z_{\text{sDUT,Load}} = 31,36 \Omega$ (marginally stable)
- constantly increasing current I_{sDUT,Inverter} from battery inverter starting from t = t₁
- Solution Stable with ITM
 Solution Stable with ITM → Stable with ITM + FCF

oligole,

Z_{sROS,Grid}

Simulated Grid

U_ROS Arid

~

Application of Impedance Measurement in Power Hardware-in-the-Loop Assisted Research • Christoph Klie • 15. Sep 2022

Seite 12

Universität Hamburg