Z-NET

Pre-normalisation of Grid Impedance Measurement in the Power Line communication frequency band

$\frac{1}{2^{nd}} \sum \pi \approx \&$ 3rd Interessenverband Netzimpedanz web conference 2^{nd} of November 2021

Topics

- 1. Short introduction about Z-NET project and objectives
- 2. Realisation of a 'Static Line Impedance Reference' and test results
- 3. Design and testing of a programmable and time variant impedance (FTdGI)
- 4. On-going activities with standardization and other collaborations

Objectives : Frequency and time dependent **Hes**.so Walks Grid Impedance – measurement techniques

- Design, evaluation, calibration of laboratory equipment
- Common definition for standardization activities

Frequency dependent Grid Impedance

10 IZI in Ohm 1 inv 2 inv 4 inv 8 inv 16 inv 31 inv 0 inv 10-1 10³ 104 10⁵ Frequency in Hz 90 Phase in ° -45 -90 10³ 10^{4} 10⁵ Frequency in Hz

S-SO Valais-Wallis

Time dependent Grid Impedance

Objectives : PLC communication for smart metering - EM compatibility test set-ups

Laboratory trials with variation of the PLC channel and PV converter

PLC Test bench according to ETSI TS 103 909 V1.1.1 Standard (2012-12)

or

EN 50065-2-3 Edition 2: 'Immunity requirements for mains communicating equipment operating in the range of frequencies 3 kHz to 95 kHz and intended for use by electricity suppliers and distributors'

No inverter:

Hes.so/// VALAIS WALLIS

With inverter:

Objectives : References impedances for passive and active EMC filters design

• Line Impedance stabilizing active circuit realized by one of the project partner

Hes·so

HES-SO Valais-Wallis

Institute Systems Engineering

Group IE&D (Industrial Electronics and Drives)

Competences:

- Converter design
- Advanced electric machines and drives
- Controller design and fast converter prototyping (POETIC platform)
- EMC and impact of converters on Power Quality
- Control hardware in the loop (C-HIL)

Project partners overview

Schweizerische Eidgenossenschaft

Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE

METAS	HES-SO Valais-Wallis	SCHAFFNER	SIG	Camille Bauer Metrawatt
Swiss Metrology Institute	University of Applied Science, Institute System Engineering	EMC Filters design, production and slaes	DSO in Geneva	PowerAnalysers Design and production
Laboratory Electrical Energy and Power	Industrial Electronics & Drives Lab	R&D Unit (B. Stauffer, S. Pasko)	Power Quality Group (Cedric Pellodi)	R&D Unit (Thomas Naef) & Management (Max Ulrich)
		•		
Realisation SLIR (WP1)	Project Leader	Development of Line Impedance Stabiliser	Power Quality measurements with PQ-Box on sites with DER	Interest to integrate FdGI in their equipement
Realisation VLIR (WP2 - 3)	On optimizer and evolution of		and e-Mobility, Heat Pumps,	
Uncertainty evaluations	SLIR and PLIR (WP 1-3)	Participation to ERIGrid measuring campaign in Bilbao	Smart Metering implementation pilot projects with G3-PLC	Involved in several Research projects with field measuring
EMPIR projects	Intercomparison Z-Analysers and recommendations (WP4)			campaigns of grid impedance
Standardisation comitees TC 85,	Recommendations (WP5) Standardisation comities (WP6) TC 77A. TC 219. TC 8X	Standardisation committee TC 77A, WG8	Member of GRUT : Technical uniformization WS	Standardisation activities TC 85, TC 8x, DACH-CZ

Project partners domains of expertise

• Great complementarity of expertise to cover the PLC and Impedance topics

Main findings of the Z-NET project

- Better understanding and capability to model the impact of Frequency dependent and Time varying Line impedance on signal transmission for Power Line communications systems
- Static and programmable/time varying Line Impedance references developed and tested
- Intercomparison of several FTdGI analysers with the help of the Z-NET references
- Stronger technical expertise available for standardisation in EMC, Power Quality and/or electric energy distribution

HES-SO Valais-Wallis

Design and tests of static Line Impedance reference

- Goal: Inter-comparison of spectral grid impedance meters
- Based on V-AMN (CISPR 16)
- Unique static impedance reference measured by 4 institutes and 1 engineering company
- Comparison
 - Measuring ranges
 - o accuracy in amplitude and phase
 - Functionality
 - o measurement duration

Static impedance reference – reference curve

Target → blue (left) / red (right) (D-A-CH-CZ campaign 2018

Final static impedance reference curve, theorical \rightarrow purple

Graphic source: bulletin.ch 5/2019 (Höckel – Meyer)

Static impedance reference – adaptation of V-AMN

HES-SO Valais-Wallis Page 13

&

- Keep V-AMN unmodified
- Supplement additional network to reduce impedance seen (from Z-meter)
- > Replace spectrum analyser by a 50 Ω termination

Static impedance reference - schematic

2. Sites of measure - Overview

1. METAS

Federal Institute of Metrology CH - Bern

2. TUD

Technische Universität Dresden D - Dresden

3. morEnergy

D - Hamburg

4. UPV-EHU

Universidad del Pais Vasco ES - Bilbao

5. HES-SO VS

Haute Ecole Spécialisée de Suisse occidentale Valais//Wallis CH – Sion

6. METAS

Federal Institute of Metrology CH – Bern

7. morEnergy

D – Hamburg

8. METAS

Federal Institute of Metrology CH – Bern

3. Impedance measuring equipment's - Pictures

3. Impedance measuring equipment's – characteristics-1

Characteristics	TUD (Spitzenberger & Spies IMD300)	morEnergy ONIS-690V	UPV/EHU	HES-SO VS IGORMETER	
Coupling to grid	Direct connection	Direct connection	Via capacitive coupler	Direct connection	
Connection for measurement	4-wire (current injection and voltage measurement separately)	2-wire (controllable load)	4-wire (current injection and voltage measurement separately)	4-wire (current injection and voltage measurement separately)	
Excitation source Type and value	Current (3 A _{RMS})	Switched controllable load	Voltage (config. up to 3.5V _{RMS})	Current (90 mA _{RMS})	
Excitation source Type and value Frequency sweep	Current (3 A _{RMS}) Single frequency steps	Switched controllable load Randomly pulsed signals (broadbandexcitation)	Voltage (config. up to 3.5V _{RMS}) Single frequency sweep	Current (90 mA _{RMS}) Single frequency steps (config.)	

3. Impedance measuring equipment's – characteristics-2

Characteristics	TUD (Spitzenberger & Spies IMD300)	morEnergy ONIS-690V	UPV/EHU	HES-SO VS IGORMETER
Signal processing	Fourier analysis (DFT)	Fourier analysis (DFT)	Fourier analysis (FFT)	Dual-Phase Demodulation (Lock-In Amplifier Detection)
Time windowing	Rectang., 200 ms (10 fundamentalcycles length)		Rectang., Config. (Typ.: 20 ms window, 5 ms sliding window)	
Bandwidth	0 kHz -200 kHz	0 kHz - 150 kHz	20 kHz - 500 kHz	1 kHz - 500 kHz (extendable 250 Hz - 2 MHz)
Frequency resolution	5 Hz	Configurable Best resolution: 5 Hz	Configurable. Typical: 50 Hz. Best resolution: 5 Hz	Configurable, (logarithmic orlinear stepping)
Measurement time	Several minutes	Configurab (related to swee Typ.: 2 se		From 1 to 10 min (related to resolution in freq.)

5. Results – 1st and 2nd rounds

Design, realization and test of the **Hes**·so **// Wat** programmable and time variant impedance (FTdGI)

- Goal: Inter-comparison of spectral grid impedance meters for two mode of operations:
 - o FdGI Frequency dependant (Programmed resonances / damping)
 - FTdGI Frequency and Time dependent (Programmed resonances / damping / switching time)
- Based on a selectable and programmable array of passive components
- Comparison
 - \circ measuring ranges
 - \circ $\,$ accuracy in amplitude and phase $\,$
 - o Functionality
 - o measurement duration

Programmable spectral impedance – working principle

- The LISN normalizes the input impedance;
- The programmable impedance is controlled by a web-interface on any network capable computer;
- Components are manually selected form a list;

4. FTdGI reference – schematic

Programmable spectral impedance – Realisation

- Power board: holds the discrete components, the switches and handles mains voltages
- Control board: handles the switching, the user interface, the low voltage supply
- 366 different calibrated FdGI curves available

HES-SO Valais-Wallis Page 23

&

Time variant spectral impedance – Realisation

The time variant impedance is an option of the programmable impedance device; Same components values, switched on or off within a mains cycle; The **timing is controlled with a zero crossing detector** and a real-time microcontroller; An external control is also available.

2. Sites of measure - Reminder

- 1. METAS (Federal Institute of Metrology) / CH Bern
- 2. HES-SO VS (Haute Ecole Spécialisée de Suisse occidentale Valais//Wallis) / CH - Sion
- 3. TUD (Technische Universität Dresden) / D Dresden
- 4. morEnergy / D Hamburg
- 5. UPV-EHU (Universidad del Pais Vasco) / ES Bilbao
- 6. METAS

3. Impedance measuring equipment's - Reminder

Characteristics	TUD (Spitzenberger & Spies IMD300)	morEnergy ONIS-690V	UPV/EHU	HES-SO VS IGORMETER
Subcycle analysis capability?	Yes	Yes	Yes	No (although (hardware ready)

FTdGI reference – Test setup

4. FTdGI reference – Dynamic scenarios selection

- > 366 calibration curves made available by METAS!
 - ▶ Keep curves between phase and neutral \rightarrow 61 curves
 - > Selection of interesting resonance frequencies \rightarrow 9 tests
 - > Rejection of cases without damping (R = 0 Ω) \rightarrow 5 tests
 - Initial situation S1 + 4 curves (S3/S4/S7/S8) available!
 - Keep tests that do not present important oscillation at switching time

> Finally \rightarrow 3 comparative tests executed

Dynamic test	C /F	L/H	R /Ω	Delay sw on /ms	Length sw on /ms
S1	no value settled	no value settled	no value settled	n/a	n/a
D2	0.1e-6	1e-6	0	n/a	n/a
D3	0.1e-6	1e-6	1	2.5	3.39
D4	1e-6	47e-6	1	2.5	3.39
D5	4.7e-6	4.7e-6	0	n/a	n/a
D6	10e-6	10e-6	0	n/a	n/a
D7	10e-6	10e-6	10	2.5	3.39
D8	10e-6	100e-6	10	n/a	n/a
D9	All C settled	All L settled	0	n/a	n/a

Results – static scenarios – unenergized (1)

- Exemple test S1: no components of programmable impedance selected
- Reference: METAS measure for V-AMN alone

Hes·so/

- 2 institutes could achieve the tests
 - HES-SO VS
 - UPV / EHU
- > Measurements match from 1 kHz \rightarrow 30 kHz
- Unexpected behaviour above 100 kHz
 - o impedance goes capacitive
 - o several serial and parallel resonances
 - o parasitic elements?
 - Parasitic resonances do not match between both Z-meters, but correct trend

Results – static scenarios – energized

8

Page 30

- Exemple test S1: no components of programmable impedance selected
- Reference: METAS measure for V-AMN alone

Hes·so/

- 3 institutes could achieve the tests
- One equipment could not perform the test (permanent error)
- Behaviour as expected for HES-SO VS and TUD
- Surprising behaviour of meter from UPV/EHU!

Results – dynamic scenarios – energized (1)

Simulation (HES-SO VS)

Measure (UPV/EHU)

- Exemple test D3, results issued as 3D graphics
- Reference: Simulation issued by HES-SO VS (LTspice®)
- Expected serial resonance \rightarrow 503 kHz
- 2 institutes could realise the tests
- Simulation does not take into account the defaults of the programmable impedance

 strict comparison difficult
- 3D graphics are difficult to read

6. Conclusion and discussion

SO FAR:

- The demonstration of the utility of a traceable impedance reference to improve comparison of equipment's is achieved.
- One equipment could be improved between 2 tests rounds
- A redefinition of the minimum frequency of use at 9 kHz would even allow an alignment with the CISPR 16-1-2 standard
- Programmable FdGI to test static scenarios is a good tool but it does not withstand all architecture of impedance meters.
- Stability at switching times must be carefully studied to allow a meaningful comparison
- Testing conditions and results presentations need to be better coordinated!

NEXT:

- > Uncertainty of static impedance will be evaluated in the frame of EMPIR Grid EMI project
- Further comparative measurements of impedance analyser should be realised with selected Power Electronics Equipment
- Report to standardisation committee
- Investigations with HIL simulation tools

Standardisation activities and collaboration

CENELEC TC 219 – Mains Communication Systems (Ex SC205) WG 11 Immunity

EN 50 065-2-3, Ed. 2

Signalling on low-voltage electrical installations in the frequency range 3 kHz to 148,5 kHz - Part 2-3: Immunity requirements for mains communicating equipment operating in the range of frequencies 3 kHz to 95 kHz and intended **for use by electricity suppliers and distributors**

- defines limits and test methods for the immunity of MCE
- provides guidelines for the assessment of the performance of the communication function of an MCE

→ Smart Metering!

EMI Report IV First draft

Electromagnetic Interference in the Frequency Range below 500 kHz

- Current state of EMI to electrical equipment and systems up to 500 kHz
- Characterisation of EMI related phenomena
- Measurement issues
- Known EMI cases: sources and victims
- Legislation, regulation and standardization
- Recommendations
- → Supraharmonics vs PLC for Smart Meter!

EN 50065-2-3 – Immunity of MCE in CENELEC A-Band –

Proposed test circuit for differential mode conducted disturbances and signals immunity test (Annex A)

.... Test circuit for differential mode conducted disturbances and signals immunity test, AC input and AC output power ports. "This Annex B provides additional guidelines for an **optional assessment of the MCE communication performance**, which may be measured during the EMC tests and documented in the test report"

→ Not only the transmission channel is considered

IEC 77A EMC Low Frequency Phenomena

WG8 : EM environment associated with disturbances on electricity supply networks

TR 61000-2-5 First draft

- Resonance phenomena with network and power electronics equipment based on actual cases
- Impact of modern power electronics on propagation and amplification of voltage distortion
- Cases of a large amount of converters
- Impact of grid conditions on the operation of converters

On-site measurements with CBM team : Siviez (VS)

- Traditional' MV/LV transformer station
- Small Renewable energy production plant (IM)
- Looking for a resonance and 7th to 11th harmonics

&

Page 36

HES-SO Valais-Wallis

630kVA 16000/400V

First comparative HF Impedance measurement with

- 3 Z-Meters on Alps site
- > Traditional' MV/LV transformer sta

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Energie BFE

Aknowledgment:

The research activities presented here where mainly funded by :

Swiss Federal Office of Energy SFOE

Energy Research and Cleantech Division

SFOE contract number: SI/501715-01

